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Computer Vision (CV) algorithms require large annotated datasets that are often labor-
intensive and expensive to create. We propose AnnotateXR, an extended reality (XR)
workflow to collect various high fidelity data and auto-annotate it in a single demon-
stration. AnnotateXR allows users to align virtual models over physical objects, tracked
with 6DoF sensors. AnnotateXR utilizes a hand tracking capable XR HMD coupled with
6DoF information and collision detection to enable algorithmic segmentation of different
actions in videos through its digital twin. The virtual-physical mapping provides a tight
bounding volume to generate semantic segmentation masks for the captured image data.
Alongside supporting object and action segmentation, we also support other dimensions
of annotation required by modern CV, such as Human-Object, Object-Object, and rich 3D
recordings, all with a single demonstration. Our user study shows AnnotateXR produced
over 112,000 annotated data points in 67 minutes.
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1 Introduction

The field of computer vision (CV) has made significant progress
in the last decade with the help of advances in machine learning
(ML) algorithms. CV has demonstrated a large variety of practi-
cal applications in many fields such as autonomous driving [1,2],
biomedical imaging [3], robotics [4], and point cloud mapping
[5,6]. However, most current state-of-the-art ML algorithms rely
heavily on high-quality and high-quantity annotated data sets [7—
11] for training and test sampling. Hence, researchers in the CV
community are constantly producing annotated data sets tailored
to specific problems and applications.

These standardized data sets offered by the CV community have
facilitated the creation, validation, and improvement of algorithms.
Currently, these data sets are annotated post hoc by manual an-
notators (for example, Mturkers) with tools such as Mechanical
Turk [12], Sagemaker Ground Truth [13], Supervisely [14], and
Anolytics [15]. Data set annotations are often time, money, and
labor-intensive endeavors [16]. This bottleneck inhibits users from
quickly and efficiently creating customized data sets for end-user
applications [17]. Apart from labor intensity, modern CV algo-
rithms target applications requiring multiple types of annotations
within the same data. For example, works in action segmentation
such as Action Genome [18] and Home Action Genome [11] have
shown that additional annotation information regarding Human-
Object (H-O) interaction alongside action segmentation informa-
tion has improved performance. However, supporting the need for
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multiple annotations currently compounds labor intensity limita-
tions, prevents scalability, and limits research.

To address the need for high-quality annotations while reducing
dependency on manual labor, works such as Playing for Data [19],
020 [20], and Tremblay et al. [21] propose using synthetic envi-
ronments to generate data sets. Synthetic data sets are becoming
accessible due to advances in rendering pipelines and generative
adversarial models [22]. While being more efficient for data set
creation than manual annotation, purely synthetic data sets are lim-
ited in their utility as the generated data has no grounding in the
real world, such as lack of RGB frames [23]. Synthetic data sets in-
spired us to look at virtual environments for generating large quan-
tities of annotated data. The shortcomings of synthetic data sets
motivated us to ground the virtual environment to a real physical
environment. Hence, we propose generating a virtual equivalent of
the physical world and updating the virtual based on the changes
in the physical.

We present AnnotateXR, an extended reality application ca-
pable of simultaneous collection and auto-annotation of data to
support several different applications with a single demonstration.
Applications such as Object detection [24], semantic segmenta-
tion [25], Video action segmentation [26], 6DoF predictions [27],
Human-Object (H-O) interaction [28], Object-Object (O-O) inter-
action [20,29] and rich 3D scene recording [30] are supported by
AnnotateXR.

AnnotateXR explores leveraging the strength of extended reality
(XR) to record and annotate data. We achieve this by capturing
a digital twin of the real-world action. A digital twin is defined
as "an executable virtual model of a physical thing or a system."
[31,32] An external 6DoF sensor (Antilatency [33]) is attached

JCISE-23-1597 / 1



Virtual Scene

® resl
@ virtual

Fig. 1

3

Overview of the AnnotateXR data collection workflow. (A) A user performing a task with actively tracked objects

within a tracking area in front of an actively tracked RGB camera. (B) A virtual digital twin of the real-world interactions of
the user and objects. (C) A raw 2D image of the user performing the task. (D) A virtual 3D replica of the user’s action. (E) A
one-to-one overlay of the virtual and real images utilized to generate segmentation masks.

to every physical object and tracked. At the same time, the user
interaction is captured via Head Mounted Display (HMD) Oculus
Quest 2 [34].

A virtual replica (widely available in the form of CAD models
and 3D assets [35-38]) of the tracked object is aligned by the user
over its physical equivalence to record the digital twin. Annota-
teXR empowers the users to perform this alignment without re-
quiring sophisticated calibration techniques. This virtual-physical
alignment, in turn, also provides passive haptics for the user while
performing the task and working in XR. Finally, we capture the
RGB data with physical cameras. We also track the position and
orientation of these physical cameras within a tracking volume. We
then build a corresponding virtual capture of the objects. So, for
every RGB frame captured with a physical camera, a virtual frame
of the virtual world from the exact location of the physical camera
is captured and used to annotate and label the data set by mapping
the virtual over the physical (Refer figure 1). This approach avoids
human intervention for annotation and automates the process, thus
ensuring quality while reducing cost and improving speed.

To test the strength of our system and the quality of annota-
tion generated by our workflow, we performed a preliminary user
study on 12 users and compared AnnotateXR’s annotations with
manually user-generated annotations. Our approach enabled even
novice users to generate a large quantity (over 112,000) of multiple
data annotations. Furthermore, in a post-study interview, all users
preferred using AnnotateXR for large-scale data collection. The
following are our contributions to the current work:

* We propose an extended reality application capable of record-
ing physical activity and creating a virtual equivalent in par-
allel for capturing and annotating data to support the growing
needs of modern computer vision algorithms.

— An auto-labeling protocol capable of handling dynamic
moving objects utilizes the 3D virtual model aligned
with the physical object to obtain object labels and se-
mantic segmentation masks for the corresponding RGB
image frames in a video.

— Utilizing H-O/O-O interaction information obtained via
mesh collision detection in the digital twin to produce
action segmentation data for action recognition.

* A user study to evaluate the difference in performance and
quality of annotation between current state-of-the-art methods
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[14,39] and our approach. Our study shows that AnnotateXR
can produce a large quantity (112,737 annotated data points in
66.55 minutes; total for 12 users) with statistically insignif-
icant differences in annotation quality compared to manual
annotations.

2 Related Work

Computer vision algorithms require a sufficiently large amount
of data with variations to ensure coverage [45]. Furthermore, hav-
ing enough data is crucial for the generalization capabilities of
machine learning systems [46]. In the past decade, the variety of
problems that CV has tried to solve has grown tremendously. Prob-
lems ranging from object detection [24,47,48] to segmentation [25]
are being explored. In video analytics [15], action understanding
tasks [49], detecting human-object interaction [18], and object-
object interaction [20,29] are actively researched. To support such
a large variety of problems, an equally well-annotated data set is
required. Most current approaches try to provide specialized and
problem-specific solutions for creating data sets [7,8]. Since there
is a rising trend of multi-modal data sets with annotations for var-
ious problems in computer vision [11,18], there is also a need to
support tools capable of creating such diverse annotations.

Researchers have begun expanding previously available large
data sets to support additional annotations. For example, MS
COCO [50] started off as a purely object label data set but has
now expanded to support semantic segmentation [S1], scene seg-
mentation [52], human pose [53], image captions [54], and task
detection [55], enabling the data set to support a larger domain
of CV problems. Hence, problem-specific annotations are becom-
ing outdated. To support these current trends, we have pursued
a more generalized strategy by allowing humans to collect data
within an XR environment and creating a virtual-physical equiv-
alence of human and object interactions to auto-generate multiple
types of annotations.

2.1 Image 2D Annotation.

2.1.1 Manual Annotation. The demand for high-quality anno-
tated data sets in machine learning has enabled the development of
several commercial tools. Supervisely [14], AIMultiple [56], Me-
chanical Turk [12], Sagemaker Ground Truth [13], and Anolytics
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Table 1

Positioning AnnotateXR with respect to prior related work on data annotation supports different annotation modali-
ties for CV. The categories can be grouped into the first three columns: "Image,” "Video," and "3D Mesh,"

representing input

modalities, while all other categories in the data set are various applications of the data.

. Object Object Hand Human
Image  Video 3D Mesh 1y ion Segmentation H-O 0-0 6DoF 1 Pose

AnnotateXR (Ours) v v v v v v v v v
LabelAR [40] v v
LineMod [41] v v v v
6 DoF [42] v v N v
020 [20] v v v v
Home Action Genome [11] v v v
Action Genome [18] Vv v v
H20 [28] v v v v v v
GRAB [43] v v v v
3DPW [44] v N v Vv
Interacting Objects [29] v v v v

Level 1 Action — Assembling Tangrams

Level 2 — Coarse Grained Step 1 Step 2 Step 3 Step 4

Level 3 - Fine Grained | |

Hand approaching blue object

Hand picking blue object

Hand moving blue object Hand adjusting blue object

Blue object approaching red object Blue and Red objects in contact

Fig. 2 There are three levels of hierarchy in videos (Action, Step, and Interaction) [18]: Level 1 is the larger task action (for
example, assembling tangrams), level 2 is coarse-grained (for example, picking up and positioning the orange triangle), and
level 3 is fine-grained, which involves H-O and O-O interactions (for example, hand approaching blue object). The coarse-
grained layer involves multiple sequential fine-grained interactions that constitute a step in Level 2. Sequential combinations

of Level 2 steps constitute a Level 1 action.

[15] are all web-based Ul tools supporting crowdsourced and man-
ual annotation of data. However, this approach is labor-intensive
[57] and expensive [16] to support modern CV’s need for data sets
with multiple annotations. Thus, with AnnotateXR, we provide a
workflow to automate the process while simultaneously supporting
multiple annotation capabilities.

2.1.2  Semi-Automatic Annotation. Since manual annotation
is expensive and time-consuming, especially for semantic-
segmentation annotations [57], researchers have focused on devel-
oping approaches to aid the human annotator. For example, works
such as Beat the MTurkers [58] and Xie et al. [59] use available
3D models and human-generated 3D bounding boxes to align and
produce the segmentation masks. Other works, such as Castrejon
et al. [60] and Acuna et al. [61], model the boundary of an ob-
ject using Recurrent Neural Networks (RNNs) to aid humans with
annotating the images with object boundaries. Unlike these past
works, AnnotateXR does not rely on human input for every frame,
instead requiring virtual-physical alignment only at the beginning.

2.1.3 Mixed Reality Annotation. Works such as LabelAR [40]
and Objectron [62] propose using spatial tracking technology, such
as phone-based AR, to draw a bounding area/volume through which
objects are tracked and annotated. Recent works such as ARnno-
tate [63] and Immersive-Labeler [64] have explored data annotation
with immersive reality. ARnnotate uses an AR headset, such as
Hololens 2, to annotate 3D Hand-Object Interaction Pose Estima-
tion, and Immersive-Labeler uses a VR headset to annotate 3D
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point clouds. Another recent work by Zhou et al. [65] explores
the concept of real-time annotation with deictic gestures to seg-
ment objects of interest. While these works are interesting, they
are domain-specific; for example, LabelAR is for 2D object de-
tection labeling, while Objectron provides a data set for 3D object
detection. These works are also limited to static objects. However,
AnnotateXR tries to provide a generalized solution for a larger do-
main and can handle dynamic objects moving through 3D space.

2.2 Video Annotation.

2.2.1 Action understanding. Well-known data sets such as
Epic Kitchens [66], Charades [67], and ActivityNet [68] provide
annotated data on action segmentation for household activities.
Works such as AVA [69], COIN [70], and Kinetics [71] provide
annotated data from open sources such as movies and YouTube.
However, these past works rely on manual annotation to classify
each video frame into a specific action class category.

Unlike the coarse-grained annotations (refer to figure 2) offered
by the works mentioned above, a recent trend in action segmen-
tation has been to explore the concept of segmenting fine-grained
actions. Works such as Something Else [72], FineGym [73], and
FineAction [49] differentiate phases of complex real-world actions
such as gymnastics and soccer video clips based on how objects
within each frame relate to each other (H-O and O-O relations).
However, this strategy is far from satisfactory due to the need for
detailed annotations.
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Recent work such as Action Genome [18] and Home Action
Genome [11] allows for grouping and annotating five frames to-
gether instead of annotating each frame individually. This reduces
the workload on the annotator while trying to annotate fine-grained
interactions, such as between Human and Object or Object and Ob-
ject. However, complete reliance on manual annotations, as pur-
sued by these past studies, is not a viable solution for developing
generic large-scale customized annotated data sets due to resource
intensity. Hence, in AnnotateXR, we have explored the concept
of recording a digital twin from observed human and object phys-
ical actions. The digital twin provides necessary cues of H-O and
O-0 interactions via collision detection, which are used to auto-
mate both fine-grained and sparse action segmentation for every
frame with less effort, providing a scalable alternative to existing
approaches.

2.2.2  Semantic Segmentation in videos. Works such as DAVIS
[74] and CamVID [75] provide segmentation mask annotation of
objects in a video. However, the masks were obtained by man-
ual annotation over every frame. Other works, such as Vijaya-
narasimhan et al. [76], allow the user to annotate the first frame in
a video and try to propagate the annotation over subsequent frames.
However, due to a lack of confidence in tracking, these methods
are viable only for short video clips before the tracking propagation
loses accuracy. Recently, IKEA ASM [77] has explored annotat-
ing segmentation masks, human pose, and object pose only on
keyframes within a video to reduce human effort. However, this
approach still required keyframes to be ’identified’ and annotated.
AnnotateXR, however, relies on virtual-physical model mapping
and physical object tracking to generate a dynamic segmentation
mask capable of annotating every frame in a video with minimal
effort.

2.3 Data collection via sensor capture. Several past works
have explored the idea of gathering 3D object information with
sensors [41-43]. GRAB [43] provides rich 3D pose information
of the human body and object captured with a body-tracking suit
and several embedded markers. Work such as Garon et al. [42] has
explored the concept of using smaller markers and removing them
post-collection by pixel masking. Work such as Ahmad et al. [78]
generates automatic datasets from CAD models. Other well-known
works such as Linemod [41] utilize depth cameras such as Kinect
[79] and available CAD models for mapping and pose estimation
dataset generation.

However, these past works only provide annotations relevant for
3D tasks and 3D pose estimation. These data sets are not well
suited for synergistic research, such as incorporating object pose
information for action recognition, due to the lack of correspond-
ing RGB frame information. This limitation of these data sets is
partly due to the past trend in computer vision to focus on solving
sub-problems. AnnotateXR overcomes this limitation by enabling
multi-modal annotations through generating a digital twin of the
real world, thus providing ground truth RGB information alongside
other 3D information such as 6DoF, hand pose, and head pose.

3 AnnotateXR Workflow

The main idea of AnnotateXR is to demonstrate a holistic design
of workflow to generate annotations for various computer vision
tasks. We create a 3D spatio-temporal digital twin of real-world
interaction with a single demonstration. We provide the user a tool
for generating detailed annotations containing object pose, object
segmentation mask, action segmentation, H-O, O-O, head/hand
pose, and the 3D digital twin with ease(refer figure 3).

3.1 Architecture & Hardware. AnnotateXR is an XR-based
environment that generates a virtual replica of the real world by
actively tracking objects of interest, head position, and hand pose
information. This environment was deployed on a PC (AMD Ryzen
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Fig. 3 System Architecture: Overview of the data flow from
the different hardware used for various sub-systems and
data collection

7 5800X 8-core processor 3.80 GHz CPU, 32 GB RAM, NVIDIA
RTX 2080TI GPU) using an Oculus Quest 2 VR head-mounted
display connected via an Oculus Link cable [34]. The application
was developed in Unity 3D (2019.4.33f) with the Oculus SDK
(used to visualize avatar, hands, and AR passthrough). For 6DoF
tool and object tracking, we use Antilatency’s development kit [33]
(refer figure 4) that allows a 10ft X 10ft X 10ft (3.048m X 3.048m
X 3.048m) tracking area. The tracking area is a ceiling-based 7ft
X 7ft X 71t (2.1334m X 2.1334m X 2.1334m) aluminium structure
constructed using 80/20 Quick Frame. The tracking modules are
comprised of Antilatency’s “Alt Tags” and “Alt Trackers”, with a
footprint of 18mm X 66 mm. The sensor wirelessly transmits to
Unity3D via Antilatency’s "HMD Radio Sockets’ (refer figure 4).
The tracking area contains 12 tracking markers (on ceiling) that
are used as reference points by the tracking modules to determine
their spatial positions. At the same time, orientation is obtained
by an inbuilt inertial measurement unit (IMU). A comparison was
conducted between Optitrack V120 Duo [80] and Antilatency to
determine the best option for real-time object tracking. Antilatency
was particularly chosen for its ease of use and reduced setup time.
Antilatency requires just one sensor per object for reliable tracking
(error rate less than 2mm [33]), whereas, Optitrack requires at least
three reflective markers (more required for an increase in tracking
quality) attached in a unique pattern for each object. However,
the system was designed to use any adequate real-time tracking
solution.

An external RGB camera is also utilized to capture a video rep-
resentation of the user performing the task. AnnotateXR uses a
ZED mini camera [81] as the RGB camera due to its integration
with Unity via the ZED-Unity plugin as well as the ease of access
to accurate camera intrinsic parameters. We do not use the depth
information offered by ZED for our capture. This camera is mod-
ified with an Antilatency HMD radio socket to track its position
and orientation actively.

3.2 Virtual-Physical Alignment. Similar to works such as
[58,82-85], AnnotateXR assumes the availability of 3D virtual
models to align with the physical models. This is a reasonable as-
sumption due to the availability of large CAD repositories: Grab-
CAD [37], TraceParts [38], McMasterCarr [36] and reliable 3D
scanning tools such as: Qlone [86], Cognex [87], and display.land
[88].

To begin, virtual replicas (CAD) of the objects are made avail-
able in the virtual space with an XR-UI. Objects within the
workspace can be categorized into either static environmental ob-
jects (such as workbenches, mounts, clamps, etc.) or dynamic
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objects (such as hand tools). Initially, all dynamic objects need to
be tagged with an Antilatency tracking module and aligned with
the virtual models for the calibration. This allows initial alignment
of the virtual and physical objects (refer to figure 5 (A)). To achieve
this, we use passthrough functionality of VR headset that lets user
see the real environment as well as the virtual objects allowing
them align the physical and virtual objects. Then user pinch (ges-
ture) the calibrate button to confirm (shown in figure 5(A)), which
allows for the virtual models to be aligned with the real objects
during the data collection. This virtual-physical alignment was
previously proposed in the work EditAR[84] to create a digital
twin of real-world actions for extended reality content generation.
The position and orientation of the static objects can be fixed by
only initially tagging and aligning with the corresponding virtual
models (i.e., the static objects need not be continuously tracked
throughout the process).

3.3 Data Collection. AnnotateXR enables users (even
novices) to capture and auto-annotate data with just a task
demonstration. Moreover, it reduces the amount of training re-
quired for users to simultaneously generate 6DoF object tracking,
object recognition, human-object, and object-object interaction
annotations.

3.3.1 O6DoF Data. The compiled data-set contains 6DoF in-
formation for all objects of interest, head position and hand pose
information. Along with the 6DoF information, an RGB image
frame of the events is captured from an external camera and
stored. The 6DoF information is comprised of position vectors,
rotation quaternions represented in the global coordinate space.
Hand pose information, position and rotation for each individual
joints are stored. AnnotateXR also provides 4X4 model to camera
(m2c) matrices that represent the position and orientation of each
object transformed into the camera coordinate space. At every
frame, AnnotateXR stores all the aforementioned information in a
comma-separated values (CSV) file along with associated times-
tamps, frame numbers and image file paths.

3.3.2  Segmentation Mask Generation. In addition to captur-
ing the real task via an RGB camera, AnnotateXR simultaneously
generates instance segmentation masks with unique colors for each
object of interest. This process is conducted within a virtual 3D
space, where images are captured from a virtual camera that mir-
rors the real camera’s orientation and position, allowing for one-
to-one equivalence between the generated segmentation masks and
the real images. To assign unique colors to each object, unique ma-
terials are attached to each object of interest when importing the
virtual model. In addition to storing the images, our system also
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stores the RGB color values of the materials, enabling automatic
segmentation of objects without requiring any additional human
intervention. This allows for efficient annotation and segmentation
of thousands of image frames.

3.3.3  Human-Object and Object-Object Interactions. Human-
Object and Object-Object interactions are important [18] for the
division of the task into relevant steps. In the case of spatial and
sequential tasks this can be classified by determining objects that
are interacting with each other and objects that the hands of the user
are interacting with. AnnotateXR generates a virtual replica of the
task and relies on unity’s physics engine to keep track of interac-
tions between objects and hands in a virtual replica of a spatial and
sequential task, generating collision [89] information that is stored
in a CSV file. This collision information, combined with manual
video action segmentation annotations (constitute Level 3 annota-
tions as shown in figure 2), allows us to segment the video into
coarse-grained Level 2 annotations as shown in the figure 2. This
approach allows for the fine-grained detection of human-object and
object-object interactions, providing a novel way to classify and
divide tasks into relevant steps. Please refer to Algorithm 1 for
details.

Algorithme 1 : Action segmentation from collision infor-

mation

Inputs : CSV file

/* Start and end collision information of each
step */

DECLARE list : array of size (N-1)
/* where N is number of steps in the video.
list contains information of number of
objects collide at the end of each step */

INITIALIZE step_start_time: array of size(N) = []
step_end_time: array of size(N) = []
/* where N is number of steps */

for frame = 0 To N do
object_colliding = x
/* where x is number of objects colliding
in frame */
for i = 0 To length(list) do
if list[i] == object_colliding then
step_end_time(i]| = frame/fps
step_start_timel[i + 1] = frame/ fps

end
end

end

3.3.4 Handling tracking loss. As mentioned earlier, Annota-
teXR relies on Antilatency for 6DoF object tracking and Oculus
SDK for hand tracking. Though both these are fairly reliable, there
are cases where tracking could be lost. In the case of Antilatency, if
the sensors are directly occluded, there tend to be discrepancies in
the way the objects are tracked. In the case of hand tracking, when
the user moves their hands out of view of the HMD, tracking can be
lost. When such discrepancies in tracking occur, the associated vir-
tual models automatically snap to the virtual world’s origin. Such
discrepancies are unwanted since accurate virtual-physical map-
ping is essential to generate precise 6DoF and segmentation mask
data sets. To address this, whenever the tracking of the objects
or the hands is lost, corresponding frames are dropped, and a UI
element is rendered (shown in figure 6) to the user indicating that
the tracking is lost. The users are then instructed to re-perform the
task.

3.4 Use Cases. The two tasks mentioned are examples of how
the proposed workflow can be used in a practical setting. In the
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Fig. 5 An AnnotateXR workflow for data generation for assembling a four-piece tangrams puzzle. In (A) and (B), the user
utilizes an AR passthrough application to align the physical model with a virtual replica. The user then assembles the puzzle
to generate a detailed dataset. A set of Raw 2D images (C) is taken every frame via an RGB camera. A digital twin (D) of
the performed action is generated during the task, which is utilized to generate a one-to-one virtual-physical mapping image
(E). These overlay images are then used to create semantic segmentation masks (F). The collision data between hands and
objects generates fine-grained Human-Object (G) and Object-Object (H) interactions. This fine-grained information and the
provided end and start conditions are used to create coarse-grained action segmentations (l)
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Fig. 6 Ul element to warn users of tracking loss during data
collection

3D Recording

Virtual Physical

Mapping

Fig. 7 Example applications to show the generalizability of
AnnotateXR. Drilling (Left) and Simulated actions of welding
(Right)

first task, a simulated action of welding two steel flat plates is
shown, while in the second task, a simulated action of drilling
into a block of wood is demonstrated. A sample of this can be
found in figure 7. In both cases, only a simulation of the action
was performed instead of the actual task. For the welding use
case, this was done to conform to safety standards. While for the
drilling task, it was not possible to track the moving spindle of the
drill during task operation. Due to the complexity of the geometry
involved, object alignment required multiple attempts.

These tasks were chosen to highlight the generalizability of the
workflow and to identify potential limitations (mentioned in sec-
tion 6), as they are both spatial tasks that require detailed data
sets. The use of XR (extended reality) applications for data anno-
tations is still an area of active research, and in this work, a more
straightforward use case was explored using tangrams. This ap-
proach reduces the complexity of the pre-processing steps involved
in task performance for the users and provides insight into the task
heuristics and workflow verification.

Journal of Computing and
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4 Evaluation

Since the goal of AnnotateXR is to produce auto-annotated data
for CV, we designed our study and utilized evaluation metrics used
by the CV community [7] to measure the quality of annotated data
obtained from AnnotateXR against human annotated data. We aim
to address:

* What is the effect on performance of standard ML models us-
ing annotations from AnnotateXR. We measured this across
three applications: Object detection (refers to identifying and
localizing of the objects in the image), Object segmentation
(refers to classify each pixel in the image) and Action segmen-
tation (refers to temporally segment a video and each segment
is then classified to different action labels).

What is the quality of annotated data across three applications
and the sensitivity of these annotations with respect to capture
distance, capture orientation, and occlusion percentage.

We chose to evaluate three CV applications (Object detection,
segmentation, and action segmentation). Since action segmenta-
tion incorporates information from three other parameters: H-O,
0-O interactions and 3D scene recording (Refer to section 3.3.3
and Algorithm 1), insights from action segmentation performance
results will lead to insights into these other parameters (H-O, O-O,
and 3D). This approach is similar to recent CV experimentation
of indirect validation; for example, Action Genome [18] verifies
the importance of H-O interaction annotation by evaluating corre-
sponding action recognition performance. In addition, it would be
needless to make users manually annotate for all variations of data
leading to user fatigue.

Due to the lack of an equivalent baseline system and the nascent
stage of research into XR-based data annotation interfaces, we lim-
ited our evaluation to 12 users. This was done as part of a "first-
use" study, aimed at the initial assessment of our AnnotateXR
system. A "first-use study" is a controlled experiment conducted
in a laboratory to evaluate the ease of use and effectiveness of a
tool or system [90].

4.1 Participants. We invited twelve participants (three fe-
male; nine male) [P1-12] from a technical university’s graduate and
undergraduate program. The mean age was 23.5 years. Five par-
ticipants had prior experience with machine learning or computer
vision, two of whom use ML-based CV algorithms for research.
The other three have taken courses in CV. Five users reported using
a VR headset (less than three times) within the past year, four users
had no experience with VR and three users reported regular use of
VR for games (ranging from once a week to once a month).

4.2 Study Design. We designed a two-session study to collect
annotated data obtained under two conditions: 1. Manual annota-
tion via current state-of-art tools, and 2. Automated AnnotateXR
system. A four-piece tangrams puzzle was the chosen task for an
in-lab study. A simple task was chosen to keep user training time
to a minimum and reduce user fatigue (more complex applications
were explored as part of the use case demonstration discussed in
section 3.4). This allow us to keep primary focus on system’s us-
ability and the interactions performed. Since the system requires
multiple interactions such as alignment and tracking, ensuring it is
user-friendly and intuitive is critical for its adoption and effective-
ness. Both sessions lasted for about 2 hrs and 15 minutes, and the
users were compensated with a $30 Amazon gift card.

4.2.1 Procedure Session 1:. Upon users’ arrival, an explana-
tion of the study was provided, followed by a signature on the
consent form. The researchers provided the users with instructions
on the four-step assembly of the tangrams puzzle. Users were in-
structed not to change the sequence of steps and perform only one
action at a time (i.e., not to assemble two pieces at the same time).
The users were offered a 5 minute practice time, after explanation.
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Sample puzzle pieces were provided alongside printed instructions
for practice. After practice, the researchers tested each user to
verify their familiarity with the task.

After training, the users were brought into the Antilatency track-
ing space. The researchers first demonstrated AnnotateXR’s fea-
tures, such as virtual-physical alignment and data capture. The
users were provided with practice time to familiarize themselves
with the system. All users said they were comfortable using the
system with less than 5 minutes of practice. During the study, the
users were asked to align the physical and the virtual models of all
four tangrams. After which, the users were asked to assemble the
tangrams in the same sequence as practiced. The users were then
asked to perform the task under 12 different capture conditions.

The 12 capture condition parameters were: Four different oc-
clusion conditions ranging from 5, 10, 15, and 20% occlusion of
objects as shown in figure 8 (The occlusion conditions are deter-
mined by the amount of surface area obscured by another object in
the tangrams.); four different distances between capture (the cam-
era) and assembly environment (i.e., the desk) varied by a delta of
20 cm, with starting distance of 30 cm; and four different camera
locations chosen to evaluate view variance at 0, 45, 90, and 135
degrees from a horizontal axis to the desk.

4.2.2 Procedure Session 2:. In Session 2, we explained the
concept of semantic segmentation and action segmentation to the
users, and then demonstrated widely used annotation tools. We
used supervisely [14] to annotate the segmentation mask and Vidat
[39] to annotate action tasks in videos. Each user was provided
with one image and one video for practice. After training, the
users were asked to annotate two randomly chosen RGB frames
from the data collected in the previous session. Each user was
asked to annotate two frames/images per case for a total of 24
images, followed by one video per case for action segmentation.
Segmentation mask labels and action labels were created before
the study.

4.2.3 Measures. Prior to the study, the participants were asked
to fill out a demographic questionnaire. Upon completing the data
capture in Session 1, a System Usability Scale (SUS) [91] survey
was administered to the users to test the usability of AnnotateXR.
In addition to this, during Session 1 we collected the time taken
for virtual-physical alignment, total number of data points collected
and time taken for data collection. During Session 2, the time taken
for manual annotation of images and videos was collected. After
Session 2, the researchers showed the users visually generated seg-
mentation masks and action segmentation data for both the manual
and auto-annotated cases. Finally, a semi-structured interview was
conducted to collect qualitative feedback on both systems.

5 Results and Discussion

We performed a comparative analysis to evaluate the data’s qual-
ity and performance. Finally, we report the results along with the
manual annotation time, total amount of data collected, usability,
and qualitative results in the following section.

5.1 Data collection. AnnotateXR was able to generate a to-
tal of 112737 semantically segmented and labeled image frames
during the entire course of the study, while users performed the
assembly task for a total of 66.55 min (12 users). 144 videos were
also annotated for action segmentation simultaneously by our sys-
tem. The mean time for virtual-physical alignment for four objects
with AnnotateXR by the users was M=1.2 min; SD=0.86. In the
second session, the users manual annotation time for semantic seg-
mentation per image were M =1.61 min, SD=0.93 for occlusion
variation; M=1.19 min, SD=0.58 for distance and M=1.06 min,
SD=0.52 for orientation. The annotation time for action segmen-
tation are: M=1.29 min, SD=0.40.

The user’s manual annotation time varied based on the capture
parameters. The users spent more time annotating occluded data
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Fig. 8 Occlusion Conditions during user study (A) 5 % oc-
clusion. (B) 20 % occlusion

than the other conditions. This observation correlates with prior
work [57] that reported difficulty with annotating segmentation
masks over objects in a cluttered scene. However, by automating
the annotation, similar to AnnotateXR, it is possible to circumvent
this limitation with the variation of capture constraint.

5.2 Performance. Object Detection: For the performance
evaluation we used Faster RCNN [92], a commonly used object
detector pretrained on MS COCO [93] data set. A mean average
precision (mAP) metric is used to evaluate model performance with
the Intersection of Union (IoU) threshold as 0.5 and 0.75 (well ac-
cepted by the CV community [7]) . The data set was split as 70:30
for training and testing. The Faster RCNN model was trained on
200 users annotated images with 88 images for testing = 288 (2 per
case X 12 cases X 12 users) and corresponding system annotated
images until convergence; each image contained four tangram ob-
jects. These results are reported in section 5.2. A paired sample
t-test between user and AnnotateXR IoU for 0.5 and 0.75 were:
t(87)=1.47; p=0.14>0.05; and t(87)=1.87; p=0.06>0.05; respec-
tively.

Object Segmentation: The evaluation for segmentation was
similar to object detection, except the model was a commonly used
pre-trained mask RCNN [94] on MS COCO [93]. These results
are reported in section 5.2 and a paired sample t-test between user
and AnnotateXR IoU was t(87)=1.35 ; p=0.18>0.05;

Action Segmentation: Out of 144 videos collected from the
users (12 users X 12 cases), 100 videos were set for training and
the rest for testing (70:30). We seperately trained the Bi-LSTM
[95] model until convergence on both the user and system annota-
tions. The gating mechanism in LSTM implicitly learn temporal
dynamics and a representation within and between action [96],
making it ideal for evaluation. We used frame level classification
accuracy (widely accepted by the CV community [97]) for Action
segmentation evaluation. Results reported in section 5.2 and a
paired sample t-test user and AnnotateXR data was: t(43) = 0.47;
p=0.63 >0.05;

Discussion: From the results, we realize that there is no sta-
tistical difference in performance between manual user annotation
and auto-system annotated data across all three CV applications.
This insight is interesting as this suggests that the data collected
with tools such as AnnotateXR are able to perform just as well
as currently commercially used interfaces. This coupled with the
capability of AnnotateXR to handle multi modal large scale data
annotations highlights our system strength and also suggests that
AnnotateXR can have a significant impact the CV community to
develop their models.

5.3 Quality. We evaluate the annotation quality by first com-
paring it against a "standardized annotation" scrupulously created
by the authors. It is similar to evaluation protocols established in
prior work LabelAR [40], with "gold-standard" labels. The gold
standard labels were collected by three researchers, each with 1-3
years of experience in collecting and annotating computer vision
datasets. Each image and video was individually annotated by these
researchers, with final annotations determined through a consen-
sus discussion among all three. This rigorous process ensures the
reliability and accuracy of the annotations, providing a gold stan-
dard benchmark for evaluating the performance of the AnnotateXR
system. We are expanding this approach to evaluate quality anno-
tation metrics beyond labeling to include semantic segmentation of
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Table 2 Results from the user study: Virtual-Physical alignment time; Number of data points generated using AnnotateXR;
Manual annotation time for images and video action segmentation under various capture conditions (occlusion, distance,
& orientation), and SUS scores. We provide the manual annotation time for users’ image and video action segmentation,

which will provide a helpful benchmark for future work

Time to Annotate Images (min)

Manual Annotation
Time to Annotate Video (min)

Occlusion Distance Orientation Occlusion Distance Orientation

User  Alignment No. of

No. Time (min) Datapoints AVG SD AVG SD AVG SD AVG SD AVG SD AVG SD SUS
1 1.42 6864 38 1.72 3.68 066 340 061 161 014 135 021 1.15 0.07 90.0
2 0.42 8541 579 080 430 063 332 084 160 005 171 009 153 029 850
3 0.75 9444 548 159 2.83 043 329 0.17 224 077 148 005 156 041 100.0
4 0.58 7305 594 120 413 033 370 048 122 0.07 106 008 090 0.13 975
5 1.42 13652 288 1.19 211 009 215 0.14 184 035 138 007 141 0.20 100.0
6 1.25 7703 216 026 174 008 1.69 020 163 047 1.19 019 091 0.04 850
7 1.00 13205 326 081 231 08 1.60 0.13 153 023 099 021 091 0.03 825
8 0.58 8518 1.59 0.14 143 0.10 126 003 142 0.10 098 021 098 008 975
9 3.58 9210 237 003 185 047 143 0.1 178 048 1.12 0.15 1.11 0.08 85.0
10 0.42 9522 231 022 167 016 144 0.2 150 022 1.13 026 098 0.15 975
11 1.58 6586 1.51 024 095 005 083 010 123 034 095 0.09 108 054 850
12 1.50 12187 1.59 046 156 021 138 020 098 008 104 0.18 131 025 875

objects and action segmentation. Hence, all 288 image frames and
144 videos were carefully annotated by the researchers.

We used a bounding box IoU metric between our standardized
and manual annotations and compared the results with the same
IoU metric between standardized and AnnotateXR annotations for
object detection. A similar analysis was performed between the
three groups’ annotations for semantic and action segmentation, but
the metrics used were pixel-wise IoU and frame-level classification
accuracy, respectively.

We then performed a paired sample t-test on the corresponding
data capture conditions (Occlusion; distance, and view orientation)
and presented the results below:

Object Detection Occlusion t(95) = 1.87; p = 0.06 >0.05; Dis-
tance t(95) = 1.91; p = 0.06 >0.05; View Orientation t(95) = 1.77
; p = 0.08>0.05;

Object Segmentation Occlusion t(95) = 1.90; p = 0.06 >0.05;
Distance t(95) = 0.56; p = 0.36 > 0.05; orientation t(95) = 1.8; p
=0.07 > 0.05;

Action Segmentation t(143) = 1.1; p = 0.27 > 0.05; (Analyzed
together as capture conditions don’t play a role for segmenting
videos)

Discussion: We realized no statistical difference in IOU accu-
racy and frame-level classification accuracy based on the analysis.
The marginally higher p-value, above 0.05, may be due to the lim-
ited quantity of manually annotated data. Consequently, it might
be challenging to derive meaningful insights regarding annotation
quality. Nonetheless, we were still able to use the auto-annotated
data to train a Faster R-CNN and Bi-LSTM model, as described
in Section 5.2. This leads us to conclude that auto-annotated data
remains usable. Our finding is still evidence that AnnotateXR can
produce annotated data with reduced human effort while still main-
taining the quality of the data that is usable for training ML models,
despite the variation in data capture conditions (occlusion, capture
distance, and view orientation).

5.4 Usability and Qualitative Feedback. The user’s reported
an M=91; SD=6.86 SUS (Refer Table 2). This score is promising
since an average score of 70, and above translates to "excellent"
usability, as indicated in Bangor. et al. [98]. Qualitative feed-
back obtained from users in post-study interviews also backs the
quantitative score. All 12 participants stated they would prefer to
use AnnotateXR over manual annotation due to its ease of use and
automated annotation approach. P3:"Mentally [cognitively], since
I was performing repeated task, 1 got irritated with the manual
approach "; P5:"I will prefer your [AnnotateXR] system so that I

Journal of Computing and
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don’t have to do the work." One of twelve participants commented
they would prefer a manual method for a small amount of data.
P4: "For very, very few images, I might do it manually instead
of setting up. But if 1 had to do a lot of data, I would like it
automated.."

The participants were largely optimistic about AnnotateXR. In
addition, seven of twelve participants commented positively on ap-
plying extended reality for automating annotations. P11: "It’s a
fascinating system for sure. Fascinating application. Very cool."
P4: "I think it’s really cool. I think I can see the benefit, or we
will have someone sit and do it manually versus having something
done on real time." Comments on recommendations for improve-
ment revolved around two categories: "tracking loss" (four partic-
ipants) and "providing visual feedback for virtual-physical align-
ment" (three participants) both have been present in limitation and
future work (section 6).

The participants with prior experience with data annotation were
able to provide additional insight into the effectiveness of Anno-
tatXR’s workflow. In particular, they noted how quick the in-situ
data capture technique was compared to the post-hoc protocol that
is currently prevalent in the field. This result is similar to the
findings of recent work by Zhou et al. [65] on Gesture-aware In-
situ Object Annotations. However, these users also mentioned the
challenges of creating an elaborate tracking system for their appli-
cations. Despite this limitation, they believed that the benefits of
the in-situ approach outweigh the additional effort required to set
up the tracking system. Overall, the feedback from these partic-
ipants suggests that AnnotatXR’s workflow is both effective and
efficient for large scale data annotation tasks.

6 Limitation and Future Work

In our study, we focused on exploring the potential of using XR
applications for data annotations in a simple use case. However, we
acknowledge that there are limitations to our approach, such as the
assumption of ideal lighting and the limitations of sensor size and
occlusion. In the following section, we will outline the limitations
of our approach and provide recommendations for future research
directions in the use of XR-based annotation tools.

Object tracking and size: Direct occlusion of sensors or HMD
prevents AnnotateXR from tracking the objects or hand pose. We
currently handle this by dropping frames from recording (refer
section 3.3.4) and allowing users to redo the task with a UI prompt
(refer figure 6). Four of the twelve participants mentioned this
limitation during the post-study interview. P8: "When I grabbed
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Table 3 Results of performance evaluation between AnnotateXR and manual user annotations. For three applications:
Object Detection, Object Segmentation, and Action Segmentation

Object Detection

Object Segmentation  Action segmentation

(mloU > 0.5) (mloU > 0.75) mloU Accuracy
User 0.48 0.23 48.6 53.5
System  0.49 0.21 49.7 54.1

the object but accidentally touched the sensor, I was supposed to
redo the task. I wish that could be better." Another limitation
is concerning object size and flexible objects. Due to the size
of the sensors, objects smaller or comparable to sensor size (18
mm X 66 mm) would not be compatible with the system. These
are current inherent limitations of sensor-based spatial tracking
technology. We believe with advances in sensing hardware such as
smaller tracking setup, markers, and electronics, these limitations
can be addressed. In addition, our use of sensor-based protocols
for data collection is in line with previous research in the field
[42,43,78,95]. The users during the study were also asked to treat
the sensors as part of the object. While previous work has explored
removing sensors from RGB pixel information such as [42], we did
not pursue this in our study as it is not the focus of our work.

Object Alignment: Three of the twelve participants commented
on providing additional features for virtual-physical alignment.
P12: "I would recommend while doing the alignments, some sort
of feedback [referring to visual widget] would be nice." However,
these suggestions did not limit users from creating usable annotated
data sets from AnnotateXR, as confirmed by results presented ear-
lier (refer to sections 5.3 & 5.2). Prior work in HCI has explored
virtual-physical alignment for AR creation in SnapToReality [99]
and precise virtual model alignment for VR in Hayatpur et al.
[100]. Incorporating such design principles in AnnotateXR work-
flow might improve the performance and quality of annotations.

Human Pose: Currently, AnnotateXR can partially capture hu-
man pose: head and hand pose. Although this would suffice for
many real-world applications [101], our system can be improved
by capturing the entire human pose better with advances in XR
HMD hardware such as wearables [102,103] or the availability of
smaller size sensors, leading to higher quality human pose an-
notations. Alleviating these limitations will lead to data sets of
multiple synthetic humans with realistic poses and many human-
object interactions. Furthermore, these challenging data sets can
support research in higher performance algorithms to tackle chal-
lenging problems in computer vision related to human pose-based
interactions.

User Study: In our current user study setup, we conducted a
controlled "first-use" study with 12 participants [90] to establish
a baseline for the system’s performance and to gather initial feed-
back. While this study provided valuable insights, we recognize
the importance of expanding our research to enhance the robustness
and applicability of the AnnotateXR system.

Future studies should involve a larger number of participants,
complex tasks, diverse objects, and varied environmental condi-
tions. Conducting open studies with the AnnotateXR will allow
us to better understand how the system manages real-world com-
plexities and diverse scenarios. This will enable a comprehensive
evaluation of AnnotateXR’s capabilities across various real-world
application domains. The study also evaluates computer vision
algorithms using data annotated by humans and collected via An-
notateXR, providing comparative insights. Future work should
include comparisons of annotation quality with existing datasets
and assessments of computer vision algorithm performance.
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7 Conclusion

This work introduces AnnotateXR, an extended reality appli-
cation capable of in-situ collection and annotation of data with a
single demonstration to support several CV applications. Annota-
teXR relies on the virtual-physical alignment to generate a digital
twin coupled with hand tracking information offered by modern
HMDs to obtain annotation cues. AnnotateXR uses the physical
and virtual mapping information to generate segmentation masks
for images and H-O/O-O interaction information to identify task
actions automatically.

With the help of a user study, we showed that AnnotateXR could
simultaneously collect and annotate over 112,000 image segmenta-
tion and 144 video based action segmentation in about 67 minutes.
Extrapolating average 1.29 min/data point, it would take over 2000
hours to manually collect and annotate the same dataset (based on
mean user annotation rate). We performed a comparative analy-
sis across three annotation applications: object detection, semantic
segmentation, and action segmentation. Our study also collected
data under various capture conditions that are present in real world
such as varying occlusion, distance, and view orientation. An-
notateXR across all these conditions and is a promising tool for
generating large-scale customized data for various CV applications.

We also have discussed limitations of the system and identified
potential future research directions for the HCI and CV community
to explore. We believe extended reality applications such as An-
notateXR have great potential for auto annotation of data, which
can aid in quicker advancement and deployment of research-based
ML and CV approaches.
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